Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(4): 2632-2652, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375983

RESUMO

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Amiloide/metabolismo , Encéfalo/patologia , Proteínas Amiloidogênicas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos
2.
Biochemistry (Mosc) ; 87(3): 269-293, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35526848

RESUMO

A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.


Assuntos
Cnidários , Animais , Cnidários/genética , Cnidários/metabolismo , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Transdução de Sinais , Transcriptoma
3.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159210

RESUMO

Bipedalism, speech, and intellect are the most prominent traits that emerged in the evolution of Homo sapiens. Here, we describe a novel genetic cause of an "involution" phenotype in four patients, who are characterized by quadrupedal locomotion, intellectual impairment, the absence of speech, small stature, and hirsutism, observed in a consanguineous Brazilian family. Using whole-genome sequencing analysis and homozygous genetic mapping, we identified genes bearing homozygous genetic variants and found a homozygous 36.2 kb deletion in the gene of glutamate receptor delta 2 (GRID2) in the patients, resulting in the lack of a coding region from the fifth to the seventh exons. The GRID2 gene is highly expressed in the cerebellum cortex from prenatal development to adulthood, specifically in Purkinje neurons. Deletion in this gene leads to the loss of the alpha chain in the extracellular amino-terminal protein domain (ATD), essential in protein folding and transport from the endoplasmic reticulum (ER) to the cell surface. Then, we studied the evolutionary trajectories of the GRID2 gene. There was no sign of strong selection of the highly conservative GRID2 gene in ancient hominids (Neanderthals and Denisovans) or modern humans; however, according to in silico tests using the Mfold tool, the GRID2 gene possibly gained human-specific mutations that increased the stability of GRID2 mRNA.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Receptores de Glutamato , Distúrbios da Fala , Adulto , Éxons , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de Glutamato/genética , Distúrbios da Fala/genética , Síndrome
4.
Front Immunol ; 11: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117220

RESUMO

The immune system contributes to neurodegenerative pathologies. However, the roles of γδ T cells in Alzheimer's disease (AD) are poorly understood. Here, we evaluated somatic variability of T-cell receptor γ genes (TRGs) in patients with AD. We performed deep sequencing of the CDR3 region of TRGs in patients with AD and control patients without dementia. TRG clones were clearly detectable in peripheral blood (PB) and non-neuronal cell populations in human brains. TRG repertoire diversity was reduced during aging. Compared with the PB, the brain showed reduced TRGV9 clonotypes but was enriched in TRGV2/4/8 clonotypes. AD-associated TRG profiles were found in both the PB and brain. Moreover, some groups of clonotypes were more specific for the brain or blood in patients with AD compared to those in controls. Our pilot deep analysis of T-cell receptor diversities in AD revealed putative brain and AD-associated immunogenic markers.


Assuntos
Envelhecimento/sangue , Envelhecimento/imunologia , Doença de Alzheimer/sangue , Doença de Alzheimer/imunologia , Encéfalo/imunologia , Células Clonais/imunologia , Genes Codificadores da Cadeia gama de Receptores de Linfócitos T , Receptores de Antígenos de Linfócitos T gama-delta/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Regiões Determinantes de Complementaridade/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Receptores de Antígenos de Linfócitos T gama-delta/sangue , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Adulto Jovem
5.
Transl Psychiatry ; 9(1): 256, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624234

RESUMO

Both heritability and environment contribute to risk for schizophrenia. However, the molecular mechanisms of interactions between genetic and non-genetic factors remain unclear. Epigenetic regulation of neuronal genome may be a presumable mechanism in pathogenesis of schizophrenia. Here, we performed analysis of open chromatin landscape of gene promoters in prefrontal cortical (PFC) neurons from schizophrenic patients. We cataloged cell-type-based epigenetic signals of transcriptional start sites (TSS) marked by histone H3-K4 trimethylation (H3K4me3) across the genome in PFC from multiple schizophrenia subjects and age-matched control individuals. One of the top-ranked chromatin alterations was found in the major histocompatibility (MHC) locus on chromosome 6 highlighting the overlap between genetic and epigenetic risk factors in schizophrenia. The chromosome conformation capture (3C) analysis in human brain cells revealed the architecture of multipoint chromatin interactions between the schizophrenia-associated genetic and epigenetic polymorphic sites and distantly located HLA-DRB5 and BTNL2 genes. In addition, schizophrenia-specific chromatin modifications in neurons were particularly prominent for non-coding RNA genes, including an uncharacterized LINC01115 gene and recently identified BNRNA_052780. Notably, protein-coding genes with altered epigenetic state in schizophrenia are enriched for oxidative stress and cell motility pathways. Our results imply the rare individual epigenetic alterations in brain neurons are involved in the pathogenesis of schizophrenia.


Assuntos
Cromatina/genética , Histonas/genética , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Butirofilinas/genética , Metilação de DNA , Epigênese Genética , Cadeias HLA-DRB5/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Esquizofrenia/etiologia , Sítio de Iniciação de Transcrição , Adulto Jovem
6.
FASEB J ; 33(7): 8161-8173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30970224

RESUMO

Human prefrontal cortex (PFC) is associated with broad individual variabilities in functions linked to personality, social behaviors, and cognitive functions. The phenotype variabilities associated with brain functions can be caused by genetic or epigenetic factors. The interactions between these factors in human subjects is, as of yet, poorly understood. The heterogeneity of cerebral tissue, consisting of neuronal and nonneuronal cells, complicates the comparative analysis of gene activities in brain specimens. To approach the underlying neurogenomic determinants, we performed a deep analysis of open chromatin-associated histone methylation in PFC neurons sorted from multiple human individuals in conjunction with whole-genome and transcriptome sequencing. Integrative analyses produced novel unannotated neuronal genes and revealed individual-specific chromatin "blueprints" of neurons that, in part, relate to genetic background. Surprisingly, we observed gender-dependent epigenetic signals, implying that gender may contribute to the chromatin variabilities in neurons. Finally, we found epigenetic, allele-specific activation of the testis-specific gene nucleoporin 210 like (NUP210L) in brain in some individuals, which we link to a genetic variant occurring in <3% of the human population. Recently, the NUP210L locus has been associated with intelligence and mathematics ability. Our findings highlight the significance of epigenetic-genetic footprinting for exploring neurologic function in a subject-specific manner.-Gusev, F. E., Reshetov, D. A., Mitchell, A. C., Andreeva, T. V., Dincer, A., Grigorenko, A. P., Fedonin, G., Halene, T., Aliseychik, M., Goltsov, A. Y., Solovyev, V., Brizgalov, L., Filippova, E., Weng, Z., Akbarian, S., Rogaev, E. I. Epigenetic-genetic chromatin footprinting identifies novel and subject-specific genes active in prefrontal cortex neurons.


Assuntos
Cromatina/metabolismo , Cognição/fisiologia , Epigênese Genética/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Loci Gênicos/fisiologia , Histonas/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Metilação , Pessoa de Meia-Idade , Neurônios/citologia , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Córtex Pré-Frontal/citologia , Gravidez
7.
Oncotarget ; 8(47): 82006-82026, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137240

RESUMO

The intramembrane proteolytic activities of presenilins (PSEN1/PS1 and PSEN2/PS2) underlie production of ß-amyloid, the key process in Alzheimer's disease (AD). Dysregulation of presenilin-mediated signaling is linked to cancers. Inhibition of the γ-cleavage activities of PSENs that produce Aß, but not the ε-like cleavage activity that release physiologically essential transcription activators, is a potential approach for the development of rational therapies for AD. In order to identify whether different activities of PSEN1 can be dissociated, we designed multiple mutations in the evolutionary conserved sites of PSEN1. We tested them in vitro and in vivo assays and compared their activities with mutant isoforms of presenilin-related intramembrane di-aspartyl protease (IMPAS1 (IMP1)/signal peptide peptidase (SPP)). PSEN1 auto-cleavage was more resistant to the mutation remodeling than the ε-like proteolysis. PSEN1 with a G382A or a P433A mutation in evolutionary invariant sites retains functionally important APP ε- and Notch S3- cleavage activities, but G382A inhibits APP γ-cleavage and Aß production and a P433A elevates Aß. The G382A variant cannot restore the normal cellular ER Ca2+ leak in PSEN1/PSEN2 double knockout cells, but efficiently rescues the loss-of-function (Egl) phenotype of presenilin in C. elegans. We found that, unlike in PSEN1 knockout cells, endoplasmic reticulum (ER) Ca2+ leak is not changed in the absence of IMP1/SPP. IMP1/SPP with the analogous mutations retained efficiency in cleavage of transmembrane substrates and rescued the lethality of Ce-imp-2 knockouts. In summary, our data show that mutations near the active catalytic sites of intramembrane di-aspartyl proteases have different consequences on proteolytic and signaling functions.

8.
Eur J Hum Genet ; 24(4): 550-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26242992

RESUMO

X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previously associated with sideroblastic anemia and ataxia. The mutation resulting in a substitution of a highly conserved glycine to serine in position 682 is apparently a major causative factor of the cerebellar hypoplasia/atrophy found in affected individuals of a Buryat family who had no evidence of sideroblastic anemia. Moreover, in these affected men we also found the genetic defects in two other genes closely linked to ABCB7 on chromosome X: a deletion of a genomic region harboring the second exon of copper-transporter gene (ATP7A) and a complete deletion of PGAM4 (phosphoglycerate mutase family member 4) retrogene located in the intronic region of the ATP7A gene. Despite the deletion, eliminating the first of six metal-binding domains in ATP7A, no signs for Menkes disease or occipital horn syndrome associated with ATP7A mutations were found in male carriers. The role of the PGAM4 gene has been previously implicated in human reproduction, but our data indicate that its complete loss does not disrupt male fertility. Our finding links cerebellar pathology to the genetic defect in ABCB7 and ATP7A structural variant inherited as X-linked trait, and further reveals the genetic heterogeneity of X-linked cerebellar disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação de Sentido Incorreto , Ataxias Espinocerebelares/genética , Adenosina Trifosfatases/genética , Adulto , Proteínas de Transporte de Cátions/genética , Criança , ATPases Transportadoras de Cobre , Feminino , Genoma Humano , Heterozigoto , Humanos , Lactente , Masculino , Linhagem
9.
Hum Mol Genet ; 24(5): 1441-56, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25480889

RESUMO

To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epigênese Genética , Proteínas de Homeodomínio/metabolismo , Doença de Huntington/genética , Neostriado/patologia , Adulto , Autopsia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Feminino , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Masculino , Neostriado/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição HES-1
10.
Nature ; 510(7503): 109-14, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24847885

RESUMO

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.


Assuntos
Ctenóforos/genética , Evolução Molecular , Genoma/genética , Sistema Nervoso , Animais , Ctenóforos/classificação , Ctenóforos/imunologia , Ctenóforos/fisiologia , Genes Controladores do Desenvolvimento , Genes Homeobox , Mesoderma/metabolismo , Metabolômica , MicroRNAs , Dados de Sequência Molecular , Músculos/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores , Filogenia , Transcriptoma/genética
11.
Front Genet ; 3: 327, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23390425

RESUMO

Alzheimer's disease (AD) is a tragic, progressive, age-related neurological dysfunction, representing one of the most prevalent neurodegenerative disorders in industrialized societies. Globally, 5 million new cases of AD are diagnosed annually, with one new AD case being reported every 7 s. Most recently there has been a surge in the study of the regulatory mechanisms of the AD process, and the particular significance of small non-coding ∼22 ribonucleotide RNAs called micro RNAs (miRNAs). Abundant data have profiled miRNA patterns in healthy, aging brain, in mild cognitive impairment (MCI), and in the moderate- and late-stages of AD. The major mode of action of miRNA is to interact, via base-pair complementarity, with ribonucleotides located within the 3' untranslated region (3'-UTR) of multiple target messenger RNAs (mRNAs), and in doing so decrease the capability of that specific mRNA to be expressed. Many miRNAs are highly cell- and tissue-specific. The human brain appears to use only a highly specific fraction of all known human miRNAs, whose speciation and complexity are defined as a discrete subset of all known small non-coding RNAs (sncRNAs) in the brain. In general, in contrast to normally, aging human brain, in AD a family of pathogenically up-regulated miRNAs appear to be down-regulating the expression certain brain-essential mRNA targets, including key regulatory genes involved interactively in neuroinflammation, synaptogenesis, neurotrophic functions, and amyloidogenesis. These up-regulated, NF-kB-sensitive miRNAs, involved in the innate immune and inflammatory response and synaptic, neurotrophic, and amyloidogenic functions include miRNA-9, miRNA-125b, miRNA-146a, and miRNA-155. Other miRNAs of the miRNA-15/107 family, miRNA-153 and miRNA-190, and others, will be discussed. Overall, this manuscript will review the known contribution of miRNAs to aging brain function and the role they appear to play in the incidence and progression of AD.

12.
Science ; 326(5954): 817, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19815722

RESUMO

The "royal disease," a blood disorder transmitted from Queen Victoria to European royal families, is a striking example of X-linked recessive inheritance. Although the disease is widely recognized to be a form of the blood clotting disorder hemophilia, its molecular basis has never been identified, and the royal disease is now likely extinct. We identified the likely disease-causing mutation by applying genomic methodologies (multiplex target amplification and massively parallel sequencing) to historical specimens from the Romanov branch of the royal family. The mutation occurs in F9, a gene on the X chromosome that encodes blood coagulation factor IX, and is predicted to alter RNA splicing and to lead to production of a truncated form of factor IX. Thus, the royal disease is the severe form of hemophilia, also known as hemophilia B or Christmas disease.


Assuntos
Fator IX/genética , Pessoas Famosas , Hemofilia B/genética , Mutação Puntual , Splicing de RNA , Alelos , Cromossomos Humanos X/genética , Códon sem Sentido , Europa (Continente) , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Hemofilia B/história , Heterozigoto , História do Século XIX , História do Século XX , Humanos , Íntrons , Masculino , Linhagem
13.
Proc Natl Acad Sci U S A ; 106(13): 5258-63, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19251637

RESUMO

Accurate unambiguous identification of ancient or historical specimens can potentially be achieved by DNA analysis. The controversy surrounding the fate of the last Russian Emperor, Nicholas II, and his family has persisted, in part, because the bodies of 2 children, Prince Alexei and 1 of his sisters, have not been found. A grave discovered in 1991 contained remains putatively identified as those of the Russian Royal family. However, not all family members were represented. Here, we report the results of genomic analyses of new specimens, the human remains of 2 burned skeletons exhumed from a grave discovered in July 2007, and the results of a comprehensive genomic analysis of remains from the 1991 discovery. Additionally, approximately 117 years old archival blood specimens from Nicholas II were obtained and genotyped, which provided critical material for the specific determination of individual identities and kinship identifications. Results of genotypic analyses of damaged historical specimens were evaluated alongside samples from descendants of both paternal and maternal lineages of the European Royal families, and the results conclusively demonstrate that the recently found remains belong to children of Nicholas II: Prince Alexei and his sister. The results of our studies provide unequivocal evidence that the remains of Nicholas II and his entire family, including all 5 children, have been identified. We demonstrate that convergent analysis of complete mitochondrial genome sequences combined with nuclear DNA profiles is an efficient and conclusive method for individual and kinship identification of specimens obtained from old historic relics.


Assuntos
Pessoas Famosas , Antropologia Forense/métodos , Genoma Humano , Europa (Continente) , Família , Humanos , Federação Russa
14.
Hum Mol Genet ; 17(19): 3030-42, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18632683

RESUMO

Expression of brain-derived neurotrophic factor (BDNF) is developmentally regulated in prefrontal cortex (PFC). The underlying molecular mechanisms, however, remain unclear. Here, we explore the role of microRNAs (miRNAs) as post-transcriptional inhibitors of BDNF. A sequential approach involving in silico, miRNA microarray, in situ hybridization and qRT-PCR studies identified a group of 10 candidate miRNAs, segregating into five miRNA families (miR-30a-5p/b/c/d, miR-103/107, miR-191, miR-16/195, miR-495), which exhibited distinct developmental and lamina-specific expression in human PFC. Luciferase assays confirmed that at least two of these miRNAs, miR-30a-5p and miR-195, target specific sequences surrounding the proximal polyadenylation site within BDNF 3'-untranslated region. Furthermore, neuronal overexpression of miR-30a-5p, a miRNA enriched in layer III pyramidal neurons, resulted in down-regulation of BDNF protein. Notably, a subset of seven miRNAs, including miR-30a-5p, exhibited an inverse correlation with BDNF protein levels in PFC of subjects age 15-84 years. In contrast, the role of transcriptional mechanisms was more apparent during the transition from fetal to childhood and/or young adult stages, when BDNF mRNA up-regulation was accompanied by similar changes in (open chromatin-associated) histone H3-lysine 4 methylation at BDNF gene promoters I and IV. Collectively, our data highlight the multiple layers of regulation governing the developmental expression of BDNF in human PFC and suggest that miRNAs are involved in the fine-tuning of this neurotrophin particularly in adulthood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Córtex Pré-Frontal/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas/genética , Adolescente , Adulto , Idoso , Sequência de Bases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neurônios/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Gravidez
15.
Am J Hum Genet ; 81(1): 32-43, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17564961

RESUMO

We identified a mutation in the CRYGD gene (P23S) of the gamma-crystallin gene cluster that is associated with a polymorphic congenital cataract that occurs with frequency of approximately 0.3% in a human population. To gain insight into the molecular mechanism of the pathogenesis of gamma-crystallin isoforms, we undertook an evolutionary analysis of the available mammalian and newly obtained primate sequences of the gamma-crystallin genes. The cataract-associated serine at site 23 corresponds to the ancestral state, since it was found in CRYGD of a lower primate and all the surveyed nonprimate mammals. Crystallin proteins include two structurally similar domains, and substitutions in mammalian CRYGD protein at site 23 of the first domain were always associated with substitutions in the structurally reciprocal sites 109 and 136 of the second domain. These data suggest that the cataractogenic effect of serine at site 23 in the N-terminal domain of CRYGD may be compensated indirectly by amino acid changes in a distal domain. We also found that gene conversion was a factor in the evolution of the gamma-crystallin gene cluster throughout different mammalian clades. The high rate of gene conversion observed between the functional CRYGD gene and two primate gamma-crystallin pseudogenes (CRYGEP1 and CRYGFP1) coupled with a surprising finding of apparent negative selection in primate pseudogenes suggest a deleterious impact of recently derived pseudogenes involved in gene conversion in the gamma-crystallin gene cluster.


Assuntos
Catarata/genética , Cristalinas/genética , Evolução Molecular , gama-Cristalinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cristalinas/química , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Filogenia , Conformação Proteica , Análise de Sequência de DNA , Serina/química , Serina/genética
16.
Science ; 314(5801): 982-5, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17095700

RESUMO

The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.


Assuntos
Cabelo/crescimento & desenvolvimento , Hipotricose/genética , Lipase/genética , Elementos Alu , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos Par 3/genética , Éxons , Feminino , Deleção de Genes , Expressão Gênica , Marcadores Genéticos , Folículo Piloso/enzimologia , Heterozigoto , Homozigoto , Humanos , Lipase/química , Lipase/metabolismo , Metabolismo dos Lipídeos , Escore Lod , Masculino , Dados de Sequência Molecular , Linhagem , Estrutura Terciária de Proteína , Recombinação Genética , Retroelementos , Federação Russa , Sequências de Repetição em Tandem
17.
PLoS Biol ; 4(3): e73, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16448217

RESUMO

Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius), and the Asian (Elephas maximus) and African savanna (Loxodonta africana) elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs) of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.


Assuntos
DNA Mitocondrial/genética , Elefantes/classificação , Elefantes/genética , Fósseis , Genoma/genética , Filogenia , Animais , Dados de Sequência Molecular , Análise de Sequência de DNA
18.
Proc Natl Acad Sci U S A ; 101(41): 14955-60, 2004 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-15469912

RESUMO

Presenilins (PSs) are required for Notch signaling in the development of vertebrates and invertebrates. Mutations in human PS1 and PS2 homologs are a cause of familial Alzheimer's disease (AD). The function of the recently identified ancient family of IMPAS proteins (IMP/SPP/PSH) homologous to PSs is not yet known. We show here that, unlike PSs, IMPs (orthologous C. elegans Ce-imp-2 and human hIMP1/SPP) do not promote Notch (C. elegans lin-12,glp-1) proteolysis or signaling. The knock-down of Ce-imp-2 leads to embryonic death and an abnormal molting phenotype in Caenorhabditis elegans. The molting defect induced by Ce-imp-2 deficiency was mimicked by depleting cholesterol or disrupting Ce-lrp-1 and suppressed, in part, by expression of the Ce-lrp-1 derivate. C. elegans lrp-1 is a homolog of mammalian megalin, lipoprotein receptor-related protein (LRP) receptors essential for cholesterol and lipoprotein endocytosis and signaling. These data suggest that IMPs are functionally distinct from related PSs and implicate IMPs as critical regulators of development that may potentially interact with the lipid-lipoprotein receptor-mediated pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Endopeptidases/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/genética , Animais , Clonagem Molecular , Interferência de RNA , RNA de Cadeia Dupla/genética , Proteínas Recombinantes/metabolismo
19.
FEBS Lett ; 557(1-3): 185-92, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14741365

RESUMO

Presenilins (PS1 and PS2) are supposed to be unusual aspartic proteases and components of the gamma-secretase complex regulating cleavage of type I proteins. Multiple mutations in PS1 are a major cause of familial early-onset Alzheimer's disease (AD). We and others recently identified PS-related families of proteins (IMPAS/PSH/signal peptide peptidases (SPP)). The functions of these proteins are yet to be determined. We found that intramembrane protease-associated or intramembrane protease aspartic protein Impas 1 (IMP1)/SPP induces intramembranous cleavage of PS1 holoprotein in cultured cells coexpressing these proteins. Mutations in evolutionary invariant sites in hIMP1 or specific gamma-secretase inhibitors abolish the hIMP1-mediated endoproteolysis of PS1. In contrast, neither AD-like mutations in hIMP1 nor in PS1 substrate abridge the PS1 cleavage. The data suggest that IMP1 is a bi-aspartic polytopic protease capable of cleaving transmembrane precursor proteins. These data, to our knowledge, are a first observation that a multipass transmembrane protein or the integral protease per se may be a primary substrate for an intramembranous proteolysis.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Clonagem Molecular , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Hidrólise , Leucócitos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Presenilina-1 , Presenilina-2 , Inibidores de Proteases/farmacologia , Conformação Proteica , Estrutura Secundária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...